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The need for high-speed imaging in applications such as biomedicine, surveillance, and consumer electronics has
called for new developments of imaging systems. While the industrial effort continuously pushes the advance of
silicon focal plane array image sensors, imaging through a single-pixel detector has gained significant interest
thanks to the development of computational algorithms. Here, we present a new imaging modality, deep com-
pressed imaging via optimized-pattern scanning, which can significantly increase the acquisition speed for a
single-detector-based imaging system. We project and scan an illumination pattern across the object and collect
the sampling signal with a single-pixel detector. We develop an innovative end-to-end optimized auto-encoder,
using a deep neural network and compressed sensing algorithm, to optimize the illumination pattern, which
allows us to reconstruct faithfully the image from a small number of measurements, with a high frame rate.
Compared with the conventional switching-mask-based single-pixel camera and point-scanning imaging systems,
our method achieves a much higher imaging speed, while retaining a similar imaging quality. We experimentally
validated this imaging modality in the settings of both continuous-wave illumination and pulsed light illumi-
nation and showed high-quality image reconstructions with a high compressed sampling rate. This new com-
pressed sensing modality could be widely applied in different imaging systems, enabling new applications
that require high imaging speeds. © 2021 Chinese Laser Press

https://doi.org/10.1364/PRJ.410556

1. INTRODUCTION

High-speed imaging has become more and more crucial in
many new applications, such as in biomedicine, surveillance,
and consumer electronics. There are two roadmaps for high-
speed optical imaging: engineering a faster focal plane array
image sensor and developing new imaging modalities using
a single-pixel detector. Although intense industrial efforts have
been made, high-speed and low-noise silicon focal plane array
cameras are still expensive. Furthermore, imaging at wave-
lengths outside the silicon sensitivity spectrum can make the
focal plane array cameras considerably more complicated [1].
In contrast, imaging through a single-pixel detector, which
shrinks a photodetector array down to a single unit [2–9],
can enormously reduce the cost and offer additional features
such as reduced pixel crosstalk. A popular imaging modality
of the single-pixel detector is based on point scanning [5–9]
[Fig. 1(a)], for example, the laser-scanning microscopes that
are commonly used in biomedicine [5–8]. However, such
methods are speed limited due to the point-by-point data ac-
quisition. Another approach with the single-pixel detector relies
on compressed sensing (CS) [10–12], represented by the
switching-mask-based single-pixel cameras [2–4] [Fig. 1(b)].

There, the images are encoded by a series of spatially well-de-
signed sampling patterns. For each pattern, all pixels across the
entire image are summed and collected by the detector.
Leveraging the general prior knowledge of sparsity in images,
CS is used to reconstruct the image through a small number of
measurements [2–4,13,14]. Although the sampling rate can be
below the Nyquist criterion, the imaging frame rate is limited
by how fast the sampling pattern can be switched and cycled,
which is typically conducted by a digital micromirror device
(DMD) [15] and operates at <22.7 kHz. Using an LED array
to generate the pattern could increase the overall speed, but so
far only 32 × 32 pixel images have been demonstrated [16], and
it may be expensive to scale up. It does not allow passive light
illumination (i.e., structured detection) either.

In this paper, we propose and demonstrate a deep com-
pressed sensing modality, which can significantly increase
the imaging speed while preserving a high reconstruction qual-
ity. This approach combines the strength of both compressed
sensing and point-scanning imaging, and we call it deep com-
pressed imaging via optimized pattern scanning (DeCIOPS).
Instead of projecting multiple binary patterns onto the entire
object sequentially, we utilize only one gray-scale optimized
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pattern and project it to a small subset of the object. We then
scan the pattern across the object by using fast scanning mirrors
and collect the signal convolutionally using a single-pixel detec-
tor [Fig. 1(c)]. Compared with the conventional single-pixel
camera, which relies on sequentially switching the sampling
pattern on a DMD, our scanning approach significantly in-
creases the sampling speed. Compared with the point-scanning
system, our method samples a much larger portion of the object
at once and recovers the resolution computationally. This al-
lows a great reduction of the sampling number and thus in-
creases the frame rate. We note that the improvement of
imaging speed does not require an increase of light energy.
In fact, the required light dosage in our method is smaller than
in the conventional point-scanning system due to a reduced
number of measurements. We build an auto-encoder frame-
work [17] to optimize the sampling pattern. The image acquis-
ition system is treated as an encoder, where the high-resolution
object is encoded through the sampling pattern into a few
measurements. We then formulate an iterative shrinkage-
thresholding algorithm network (ISTA-Net) [18], a
CS-induced neural network inspired by the iterative shrink-
age-thresholding algorithm (ISTA) [19], as a decoder to recon-
struct the image. This auto-encoder is trained in an end-to-end
fashion. Such a framework can learn an optimized sampling
pattern and simultaneously recover a high-resolution image
by extracting the feature of sparsity and searching the optimal
pair of the encoder and decoder with the lowest incoherence
[11], which is one key feature of DeCIOPS versus other com-
pressed sensing or deep-learning-based super-resolution imag-
ing modalities [20–23]. This new imaging modality can be
accustomed to any light-scanning imaging system and will
greatly benefit the high-throughput imaging applications.

This paper is organized as follows. In Section 2, we intro-
duce the mechanisms of the imaging modality in two configu-
rations of illuminations, continuous-wave (CW) and pulsed
light source, as well as the auto-encoder framework and the
deep compressed sensing neural network for optimizing the im-
aging and reconstruction. In Sections 3 and 4, we show the
simulation results and experimental results. In Section 5, we
discuss the system performance under different signal-to-noise

ratio (SNR) and compression ratio and how DeCIOPS can be
applied in two-photon microscopy and passive lighting
conditions.

2. PRINCIPLE

A. Image Formation
In DeCIOPS, an illumination pattern is generated through a
mask and is scanned across the object by using a set of scanning
mirrors. The detector records a subsample of the two-
dimensional (2D) convolution between the pattern and the ob-
ject (Fig. 2). Similar to any point-scanning imaging system,
DeCIOPS can use either CW or pulsed light sources. The for-
mer is commonly used in imaging systems, whereas the latter is
specialized for nonlinear microscopy. When a CW light source
or high-repetition-rate pulsed light source is used, the detector
continuously integrates the signal as the pattern scans. Hence,
in DeCIOPS, we project a rectangle-shaped pattern to the ob-
ject. By finely adjusting the integration time, each acquisition
measures a square subset of the object with a desired resolution
[Fig. 2(c)]. In case of a low-repetition-rate pulsed light source,
the sampling time stamps of the detector are synchronized with
the pulse train, and a square-shaped pattern is projected to the
object. By matching the spatial sampling step with the size of
the pattern, the entire object is sampled appropriately
[Fig. 2(d)].

Mathematically, in low-repetition-rate pulsed light illumina-
tion, the image formation of DeCIOPS can be expressed as

b � f n×n�x � g�, (1)

where x is the object, g is a square-shaped illumination pattern,
� represents the 2D convolution, f n×n�·� models the n × n
undersampling, and b is the measured image. Here, we assume
that the mask has a size of n × n pixels. In the particular case

Fig. 1. Landscape of imaging methods using a single-pixel detector.
(a) Point scanning system where the signal from an individual pixel is
sequentially recorded. (b) A conventional single-pixel camera where
different patterns are sequentially projected on the entire object,
and the overlap integrals between the object and each pattern are mea-
sured. (c) Deep compressed imaging via optimized pattern scanning
(DeCIOPS), where a pattern is scanned across the object, and the sub-
sampled convolution between the pattern and the object is measured.

Fig. 2. Schematic of the undersampling schemes in DeCIOPS.
(a) Conventional pixel-by-pixel point scanning. (b) Pixel-by-pixel
point scanning with a simple undersampling scheme. (c) DeCIOPS
in a CW light source configuration with an illumination pattern of
a uniform mask (left) or an optimized mask (right). (d) DeCIOPS
in a low-repetition-rate pulsed light source configuration with a uni-
form mask (left) or an optimized mask (right) as an illumination pat-
tern. The mathematic formula below each panel illustrates the process
of image formation, where g1 and g2 are both square shaped.
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where g is uniform mask g1 [Fig. 2(d), left], Eq. (1) is equiv-
alent to a naïve undersampling by unweighted averaging of
every n × n pixels of the full resolution image [Fig. 2(a)] ac-
quired in single-point scanning. As discussed in Section 2.B,
g can be optimized to achieve the best image reconstruction
performance [Fig. 2(d), right].

In the CW light or high-repetition-rate pulsed light illumi-
nation case, where the detector continuously integrates the sig-
nal, we configure the illumination pattern in a size of n × 1
pixels. When this pattern sweeps n columns, the information
of n × n pixels is integrated into a single measurement
[Fig. 2(c)]. We can use the same mathematical formulation
as Eq. (1) to model the image formation, where each column
in the n × n mask g is identical.

B. End-to-End Optimized Auto-Encoder Framework
In DeCIOPS, we build an auto-encoder framework to simul-
taneously learn the optimized mask pattern and a neural net-
work for image reconstruction (Fig. 3). The encoder block
models the image formation through the following expression:

b� � f n×n�x � g� � ϵ � F �x� � ϵ � Φx � ϵ, (2)

where F is an operator, Φ is the linear transfer matrix, both
equivalent to the subsampled convolution with mask g in
Eq. (1), ϵ is the additive noise inherent in the imaging system,
and b� is the measured mask-encoded image.

The decoder takes b� as the input and aims to reconstruct
the original object x by solving the following convex optimi-
zation problem with a constraint of the sparse representation
of x:

argmin
x

1

2
kΦx − b�k22 � λkΨ�x�k1, (3)

where Ψ�x� denotes a transform of x into a sparse representa-
tion under the basis of Ψ, and λ is a hyperparameter.

The solution of the problem in Eq. (3) can be initialized by
calculating the pseudo-inverse of the encoder from the mea-
surement b�. We then use ISTA [19] to find an optimized
solution of x by iterating the following two steps:

r�k� � x�k−1� − ρΦT �Φx�k−1� − b��, (4)

x�k� � argmin
x

1

2
kx − r�k�k22 � λkΨ�x�k1, (5)

where k denotes the kth ISTA iteration step, and ρ is the
step size.

AsΨ�·� is predefined empirically and may not be suitable for
the data, we adopt the ISTA-Net algorithm [18], which can
learnΨ�·� through the data. In ISTA-Net,Ψ�·� is replaced with
a trainable neural network F �·�, and the optimization problem
in Eq. (3) can be rephrased into the following L1-norm regu-
larization problem with a nonlinear transform F :

argmin
x

1

2
kΦx − b�k22 � λkF �x�k1: (6)

The kth iteration step in the original ISTA is replaced by a
series of symmetric learnable parameters in the kth ISTA-Net
phase:

F �x�k�� � soft�F �r�k��, θ�, (7)

x�k� � F −1�soft�F �r�k��, θ��, (8)

Fig. 3. End-to-end optimized auto-encoder framework of image formation and reconstruction in DeCIOPS. The encoder models the image
formation. It encodes the high-resolution (HR) object x into a low-resolution (LR) output b� through subsampled convolution Φ and additive
noise. The decoder is implemented with an ISTA-Net, which contains N phases and reconstructs the object x�N �. Each phase is realized by a
structure-symmetric pair of a forward transform F �k� and a backward transform F −1�k� with a soft shrinkage threshold, which factually matches
one iteration in the conventional ISTA. ReLU, rectified linear unit; Soft�·�, soft shrinkage threshold.
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where θ is a learnable parameter in the kth module, F −1�·� is
the inverse of F �·�, and soft�·� represents the soft shrinkage
threshold. Finally, we obtain the output of the decoder x�N �

after a total number of N ISTA-Net phases.
The loss function of ISTA-Net is obtained by calculating the

mean square error (MSE) between the output and the ground
truth with the constraint of F −1 °F � I , as both F −1 and F
are learnable and symmetric, where I is the identity operator.
As a result, we have the following loss function with the sym-
metry constraint:

Ltotal � Lerror � γLconstraint

�kx�N � − xk22 − γ
�XN

k�1

kF −1�k��F �k��x�� − xk22
�
, (9)

where γ is the weight of the symmetry constraint.

3. SIMULATION RESULTS

We trained the auto-encoder using 1500 samples of natural
scenes (2D gray-scale image, 256 × 256 pixel size) from
ImageNet [24] and validated the model with 79 samples from
two widely used benchmark datasets: Set11 [25] and BSD68
[26]. As an illustration, we chose an undersampling rate of
6.25% (4 × 4 undersampling) and initialized the pattern g as
a 4 × 4 normalized random Gaussian matrix. γ was set to be
0.01 in the loss function, accompanied by Adam optimization
with a learning rate of 1 × 10−4. We included additive noises in
the measurement (5%–10% of the signal strength). The train-
ing was performed on a GPU RTX2080Ti 11 GB. The training
work of N � 9 ISTA-Net phases takes ∼5 h for 200 epochs
with a batch size of five. We trained two independent auto-
encoders, one with a constraint on g so each column of g is
identical (CW light or high-repetition-rate pulsed light illumi-
nation) and one without such a constraint (low-repetition-rate

Fig. 4. Comparison of the reconstruction performance in the validation data set Set11 and BSD68, at an undersampling rate of 6.25%, through
(a) a simple dropout, (b) an unweighted average (uniform pattern), (c) a random or an optimized illumination pattern (DeCIOPS) with a constraint
of identical column, and (d) a random or an optimized illumination pattern (DeCIOPS). The PSNR and resolution of the reconstructed images are
labeled below the exemplary sample. (e) PSNR of the reconstructed images of all 79 samples in the validation dataset for cases in (a)–(d).
(f ) Resolution of the reconstructed images of all 79 samples in the validation dataset for cases in (a)–(d). n.s., not significant; *, p < 0.05; **,
p < 0.01; ***, p < 0.001; ****, p < 0.0001, in one-way analysis of variance (ANOVA).
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pulsed light illumination). The reconstruction results are evalu-
ated in terms of peak signal-to-noise ratio (PSNR) and spatial
resolution by using Fourier ring correlation [27] in the valida-
tion dataset. As a control measure, we compared the
reconstruction performance of the optimized pattern [Figs. 2(c)
and 2(d), right] with a random pattern and two naïve under-
sampling schemes of the full resolution image either through an
unweighted averaging of 4 × 4 pixels [equivalent to the uniform
pattern, Figs. 2(c) and 2(d), left] or a simple dropout [i.e., pick
one pixel in every 4 × 4 and drop out the others, Fig. 2(b)]. All
of the simulation groups employ an independently trained
ISTA-Net for image reconstruction. In addition, we also used
B-spline interpolation [28] to reconstruct the image that was
undersampled through a simple dropout.

We compared the measurements and their corresponding
reconstruction results for various schemes (Fig. 4). In all cases,
the reconstructed results can resolve higher resolution features
than the raw measurement. In the undersampling through sim-
ple dropout [Fig. 4(a)], ISTA-Net shows better performance
than the interpolation. These results demonstrate the effective-
ness of ISTA-Net. As the undersampling through dropout
[Fig. 4(a)] misses a substantial amount of information in the
original object, its reconstruction result is expected to be the
worst. Comparing the undersampling through the uniform pat-
tern [Fig. 4(b)] and the optimized pattern [Figs. 4(c) and 4(d)],
we find that the optimized pattern cases show reconstruction
results with sharper edges. We reason that this is because the
optimized pattern balances both the high-frequency and low-
frequency components of the original object during sampling,
whereas the uniform pattern performs a low-pass filtering such
that the high-frequency component is lost before being recon-
structed by the decoder. Indeed, when comparing the quanti-
tative results of the PSNR [Fig. 4(e)] and the resolution of
the reconstructed image through Fourier ring correlation
[Fig. 4(f )], we find that the optimized pattern case shows
the best performance. It is important to note that the optimized
pattern also outperforms the exemplary random pattern
[Figs. 4(c) and 4(d)] for both PSNR and resolution. This veri-
fies the effectiveness of our end-to-end optimized auto-encoder
framework. We also note that the optimized mask without the
constraints of identical columns show a better performance in
resolution than the one with constraints, though their PSNR
does not show a significant difference.

4. EXPERIMENTAL RESULTS

To validate the numerical simulation results, we built an im-
aging system for DeCIOPS (Fig. 5, more details in Appendix
A). Here, we used a DMD to generate the light pattern, as it
offers great flexibility in comparing the performance between
different patterns. In general, as DeCIOPS requires only one
illumination pattern, a fixed pattern mask can be used. To gen-
erate a gray-scale mask from the DMD binary pixels, we binned
32 × 32 pixels in the DMD into a super-pixel, which could pro-
vide up to 1025 gray-scale levels. A total of 4 × 4 super-pixels
were programmed to generate the optimized mask pattern. A
520 nm diode CW laser source was expanded in beam size and
collimated to illuminate the mask pattern on the DMD. The
spatially encoded light then passed a 4f system composed of a

tube lens and an objective lens to reduce its beam size. The light
pattern was then raster scanned across the sample through an
optically coupled resonant-galvo scanner set. We used a photo-
lithography mask as the sample. The light transmitting through
the sample was then collected by a photodetector through a
collection lens. While we built this transmission-based imaging
system for simplicity, we could turn it into a reflection-based
system by adding a beam splitter in front of the sample. We
used ScanImage [29] as control software for data acquisition.
By adding another 4f system composed of cylindrical lenses
right after the objective lens, we could turn the 4 × 4 size pat-
tern into 4 × 1 size (Appendix A.1). Thus, we could use the
same setup to validate the different sampling schemes.

As the optical mode from the diode laser did not have uni-
form intensity, and the pattern could be corrupted by laser in-
terference, we calibrated the DMD to ensure the illumination
pattern on the sample plane matched well with the design
(Appendix A.3). While our imaging system is naturally a
CW light imaging system, we could also mimic the pulsed light
source condition through an additional digital sampling step
after the image acquisition (Appendix A.5).

A. Reconstruction Results with a CW Light Source
We evaluated the experimental results in the natural CW light
source setting with the 4 × 1 pattern mask. We compared the
reconstruction results across the four undersampling schemes: a
simple dropout, the uniform illumination pattern, an exem-
plary random illumination pattern, and the optimized illumi-
nation pattern for various samples (Fig. 6). The ground truth
images were obtained by the high-resolution point-scanning

Fig. 5. Experiment setup of DeCIOPS. The laser beam is spatially
filtered to improve its spatial uniformity and symmetricity, collimated
and expanded in size, and then incident onto a DMD. The beam is
spatially modulated by the DMD and then shrunk in size by a 4f
system formed by a tube lens and an objective lens. The light pattern
is scanned by a resonant-galvo scanner set, where a resonant scanner
and a galvanometer mirror are optically coupled through a relay lens
set. The transmitted light from the sample is collected by a photo-
detector through a collection lens. The n × n pattern is generated
by the DMD. With an additional 4f system with cylindrical lenses
after the objective lens, the n × n pattern can be turned into n × 1 size
(Appendix A.1). The red dashed line (plane 1 and object plane) in-
dicates the conjugate plane of the gray-scale pattern mask.
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approach. At an undersampling rate of 6.25%, all of the recon-
structed results through ISTA-Net show a significant improve-
ment from the raw measurement where high-resolution
features are better resolved. Comparing between different illu-
mination patterns, we notice more details on the edges of the
reconstructed images in the optimized pattern illumination
cases [Figs. 6(a)–6(d)]. Using the metric of PSNR [Fig. 6(e)]
and spatial resolution [Fig. 6(f )], we find that DeCIOPS out-
performs the simple dropout, the uniform illumination pattern,
and the random illumination pattern with an average of
2.41 dB, 1.82 dB, and 1.73 dB improvement in PSNR and
an average of 18.9%, 14.0%, and 11.6% improvement on spa-
tial resolution, respectively.

B. Reconstruction Results with a Low-Repetition-
Rate Pulsed Light Source
Using the same experimental setup and CW light source, we
preprocess the acquired data through a digital undersampling
process (Appendix A.5), so the results mimic that acquired by
using a low-repetition-rate pulsed light source (Fig. 7). As the
integration time of each measured pixel is reduced, the raw
measurements have a lower SNR compared to the CW light

source setting. Nevertheless, the reconstruction results show
a greatly improved quality. On average, the PSNR of the recon-
structed images using the optimized illumination pattern shows
an improvement of 1.73 dB, 1.41 dB, and 0.64 dB when they
are compared with the simple dropout, uniform illumination
pattern, and exemplary random illumination pattern, respec-
tively. The improvement in the spatial resolution in the opti-
mized illumination pattern against the simple dropout, the
uniform, and the random illumination pattern is 14.06%,
10.33%, and 7.95%, respectively. Compared with the CW
light source setting, the performance improvement of the opti-
mized illumination pattern is reduced because of a reduced
SNR in the raw measurement in the low-repetition-rate pulsed
light source setting. In the Section 5.A, we further discuss how
the SNR influences the reconstructed results.

5. DISCUSSION

A. Influence of SNR on Image Reconstruction
In this section, we study the influence of SNR of the raw mea-
surement on the PSNR and pixel resolution of the
reconstruction in both simulations and experiments (Fig. 8).

Fig. 6. Comparison of the experimental results using different illumination patterns in the scanning in a CW illumination setting.
(a)–(d) Experimental results of the sample: (a) butterfly, (b) cameraman, (c) house, and (d) the Flintstones. The different columns show the ground
truth results using high-resolution point scanning, raw measurement using different illumination patterns at an undersampling rate of 6.25%, and
the corresponding reconstruction results. (e) PSNR of the reconstructed images for a total of nine samples. (f ) Spatial resolution of the reconstructed
images for a total of nine samples, calculated from Fourier ring correlation. *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001, in one-way
ANOVA.
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Weperformed simulations by adding different noise levels in the
measurement. We controlled the SNR in experiments by using
different light power. For each SNR level, we trained the
DeCIOPS independently. As expected, both the PSNR and
pixel resolution of the reconstruction improve as the SNR in-
creases and saturates at a high SNR. Compared with the naïve
undersampling through simple dropout (blue curve, Fig. 8) and
unweighted average (green curve, Fig. 8), the performance of the
optimized illumination pattern (red curve, Fig. 8) has a larger
improvement in the PSNR and pixel resolution as SNR in-
creases. This phenomenon emphasizes the advantage of the
DeCIOPS, where the optimal encoder and decoder are able to
match each other better than other independent untrained
encoders. As the noise reduces in the raw measurement (i.e., in-
creasing SNR), the network tends to pay more attention on
the reconstruction rather than denoising. As a result, the
performance difference among different illumination patterns
increases.

B. Compressed Ratio and Size of the Optimized
Pattern
In the above simulations and experiments, we set the illumina-
tion pattern size such that each pixel in the original

Fig. 7. Comparison of the experimental results using different illumination patterns in the scanning in the low-repetition-rate pulsed light illu-
mination setting. (a)–(d) Experimental results of the sample: (a) butterfly, (b) cameraman, (c) house, and (d) the Flintstones. The different columns
show the ground truth results using high-resolution point scanning, raw measurement using different illumination patterns at an undersampling rate
of 6.25%, and the corresponding reconstruction results. (e) PSNR of the reconstructed images for a total of nine samples. (f ) Spatial resolution of the
reconstructed images for a total of nine samples, calculated from Fourier ring correlation. *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****,
p < 0.0001, in one-way ANOVA.

Fig. 8. (a) PSNR and (b) pixel resolution of the reconstructed images
versus different SNRs in the raw measurement, for three different sam-
pling patterns (CW configuration), performed through simulation at an
undersampling rate of 6.25%. The results were averaged across nine
samples used in the experiment and fitted with polynomial curves.
(c) and (d) show the experimental results averaged across nine samples.
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high-resolution object is measured only once during the scan-
ning. We term this as the matching condition between the
pattern and undersampling rate. Here, for each specific under-
sampling rate, we simulated the PSNR of the reconstructed im-
ages versus the size of the illumination pattern (Fig. 9). We
notice that DeCIOPS generates the best reconstruction results
when the size of the pattern matches the 2D undersampling
rate, where the imaging modality in the encoder is an algebraic
linear orthonormal transform. When the size of the pattern is
smaller than that of the matching condition, a sharp drop ap-
pears in the reconstruction performance. This is attributed to
the permanent information loss from the unsampled pixels in
between the adjacent measurements, such that the sensing basis
ΦT in Eq. (2) forms a singular transform matrix and thus

degrades the quality of reconstruction. When the size of the
pattern is larger than that of the matching condition, the sens-
ing basis ΦT becomes less column orthonormal, resulting in
less accurate reconstruction under the CS framework and thus
a drop of the PSNR in the reconstructed images.

C. Optimized Pattern versus Random Pattern
In the conventional switching-mask-based single-pixel camera,
the random mask is one of the commonly used sampling bases,
as it is incoherent with the spatial property of the sample. We
found the same in the pattern-scanning scheme: the random
pattern shows a superior performance compared with the uni-
form pattern. However, the optimized pattern, found by the
auto-encoder through the end-to-end optimization, outper-
forms the random pattern. This is expected, as the random pat-
tern attained by the Monte Carlo method is independent
of the dataset of a specific task, unlike the optimized
pattern. Furthermore, the performance improvement of the
optimized pattern over the random pattern increases when
the measurements are more highly undersampled, as seen in
the comparison between 6.25% (4 × 4 pattern) and
1.5625% (8 × 8 pattern) (Table 1). This is attributed to more
trainable parameters in the case of the optimized pattern and
more uncertain random variables in the case of the random
pattern.

D. Comparison with Conventional Switching-Mask-
Based Single-Pixel Camera
As both DeCIOPS and the conventional switching-mask-based
single-pixel camera [Fig. 1(b)] leverage compressed sensing, we
expect that their reconstruction quality is similar at the same
undersampling rate. Indeed, the one-way analysis of variance
(ANOVA) test shows no significant difference for PSNR and
pixel resolution in the reconstructed images between these
two approaches for both simulation and experiment (Fig. 10,
Table 2, 256 × 256 pixels high-resolution objects, 6.25% under-
sampling rate, ISTA-Net reconstruction framework for both
DeCIOPS and switching-mask-based single-pixel camera).
However, DeCIOPS has a much faster acquisition speed. To im-
age a high-resolution object with 256 × 256 pixels, DeCIOPS
acquires 64 × 64 measurements at an undersampling rate of
6.25%. By using a scanning system with an 8 kHz resonant scan-
ner, the acquisition time is 4 ms. In the conventional switching-
mask-based single-pixel camera, at the same undersampling rate,
it takes 180 ms to cycle 64 × 64 � 4096 patterns using a
22.7 kHz high-speed DMD, without considering the integration
time of the detector. Thus, the imaging speed of our method is
orders of magnitude faster than that of the conventional com-
pressed sensing approach using a single-pixel camera.

Fig. 9. DeCIOPS reconstruction quality (a) PSNR and (b) pixel
resolution dependence on the size of the optimized pattern, for an
undersampling rate of 25% (2 × 2, red), 11.1% (3 × 3, green),
6.25% (4 × 4, blue), and 1.5625% (8 × 8, black), across all 79 samples
in the validation dataset. Solid curve, mean; shaded area, standard
deviation.

Table 1. Comparison of the PSNR and Pixel Resolution across the Uniform Pattern, Random Pattern, and Optimized
Pattern between 6.25% and 1.5625% Undersampling Rate in DeCIOPSa

Undersampling
Rate

PSNR (dB) Normalized Resolution (pixel)

Uniform Pattern Random Pattern Optimized Pattern Uniform Pattern Random Pattern Optimized Pattern

6.25% 21.49� 1.83 21.82� 1.72 23.13� 1.54 2.79� 0.18 2.68� 0.16 2.55� 0.15
1.5625% 15.91� 2.01 16.78� 1.94 18.47� 1.75 4.55� 0.26 4.28� 0.25 3.76� 0.21

aCW light configuration, SNR ∼ 22, for all 79 samples in validation dataset.
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E. Advantage of ISTA-Net in Image Reconstruction
In DeCIOPS, we apply ISTA-Net as the decoder. ISTA-Net is
a CS-induced neural network. Compared with conventional
optimization algorithms where the regularization term is de-
signed empirically, ISTA-Net is entirely data-driven and can
learn optimized regularization through the neural network.
Compared with other neural networks that could be used
for super-resolution, such as U-Net [30,31] and densely con-
nected super-resolution network (DCSRN) [32,33], the em-
bedded CS algorithm in ISTA-Net fits better in the
motivation of DeCIOPS and other compressed sensing frame-
work, i.e., performing fewer measurements while being able to
reconstruct high-resolution images. Indeed, when we compare
the PSNR and pixel resolution of the reconstructed images
across ISTA-Net, U-Net, and DCSRN, ISTA-Net shows the
best performance (Appendix B). In addition to DeCIOPS,
we believe ISTA-Net could also benefit other applications such
as denoising [34], fast magnetic resonance imaging (MRI) [35],
and other super-resolution imaging modalities [18].

F. Advantage of End-to-End Optimized Auto-Encoder
and Its Application in Future Imaging Systems
In most existing optical imaging modalities, image formation is
empirically designed and optimized, and the deconvolution or

object reconstruction algorithm is subsequently tailored to the
image formation process. The recent development of low-cost,
advanced micro-optics manufacturing techniques, such as
three-dimensional (3D) printing and micro–nano-fabrication
[36–40], allows rapid prototyping of user-designed optical el-
ements, which opens new opportunities to redesign the image
formation process that best fits the specific applications. Instead
of sequentially designing the image formation and the
reconstruction algorithm, their joint end-to-end optimization
produces a global optimal solution [41–43], which is the
underlying principle of DeCIOPS. We use an auto-encoder
to model the image formation and reconstruction within a sin-
gle framework and perform end-to-end training to optimize the
sampling pattern and ISTA-Net simultaneously. Our results
show that the optimized sampling pattern indeed results in
the best overall performance. Such an end-to-end training
and data-driven approach prevents any empirical bias that
may negatively impact the design. We envision that such an
approach will enable many challenging applications such
as super-resolution imaging [23,42–46], 3D imaging
[41,47–49], and high-speed computational cameras [50–52].

G. Applicability in Two-Photon Microscopy
While our imaging system used a CW light source, we mim-
icked the experimental condition of a pulsed light source and
successfully demonstrated the applicability and excellent per-
formance of DeCIOPS. This opens a new avenue to apply
DeCIOPS in two-photon microscopy. In conventional two-
photon microscopes [5,7,8], the image is acquired through
pixel-by-pixel point scanning. While this enables deep tissue
imaging as it resists light scattering, it reduces the imaging
speed. Recently, there have been multiple reports applying
compressed sensing in two-photon microscopy, with the same
approach in the conventional switching-mask-based single-
pixel camera [53–55]. However, the improvement on the im-
aging speed is limited due to the low switching speed of DMDs
or the liquid-crystal-based spatial light modulators. When ap-
plying DeCIOPS in two-photon microscopy, we expect that
our approach will significantly increase the imaging speed
and will notably benefit functional imaging through two-pho-
ton microscopy.

H. Passive Light Illumination
In our experiment, DeCIOPS is implemented using active light
illumination (i.e., structured illumination), which is commonly
used in biomedical imaging. In other imaging systems, passive
light illumination may be preferred. In fact, any passive light
illumination wide-field imaging using a focal plane array

Fig. 10. Comparison of the reconstruction results between
DeCIOPS and conventional switching-mask-based single-pixel cam-
era. (a) The ground truth of an original object, butterfly.
(b) Reconstruction result of DeCIOPS using ISTA-Net at an under-
sampling rate of 6.25%. (c) Reconstruction result of the switching-
mask-based single-pixel camera imaging approach using ISTA-Net.
Top row, simulation. Bottom row, experiment. The ground truth
of the experiment is obtained by the high-resolution point scanning.

Table 2. Comparison of Reconstruction Results between DeCIOPS (CW Light Configuration) and Conventional
Switching-Mask-Based Single-Pixel Cameraa,b

Simulation Experiment

PSNR (dB) Normalized Resolution (pixel) PSNR (dB) Normalized Resolution (pixel)

DeCIOPS 28.01� 1.03 2.13� 0.12 27.71� 1.18 2.15� 0.13
Switching-mask-based single-pixel camera 28.36� 1.00 2.12� 0.12 27.98� 1.16 2.14� 0.13

aBoth simulation and experiment were performed on nine samples from the validation dataset, with an undersampling rate of 6.25% and SNR ∼ 22.
bNo significant difference (one-way ANOVA) is found on the performance metrics between the two imaging modalities.
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(i.e., camera) can be converted to DeCIOPS (Appendix C). A
scanner can be added to the passive wide-field imaging to scan
the entire image originally projected to the camera. By inserting
a fixed mask with an appropriate aperture at the plane where
the image is scanned, a single-pixel detector can measure the
subsampled convolution between the mask and the original im-
age. The object can then be reconstructed using the same algo-
rithms in DeCIOPS for the active light illumination cases. This
way, a structured detection version of DeCIOPS can be imple-
mented.

6. CONCLUSION

We demonstrated a new high-speed imaging modality,
DeCIOPS, by synthesizing the strength of conventional point
scanning and single-pixel camera through compressed sensing.
The high-speed imaging arises from the fast beam-scanning
mechanism and a highly efficient sampling scheme through
compressed sensing; meanwhile, an auto-encoder framework
allows the simultaneous optimization of the image formation
and reconstruction process in DeCIOPS. We validated
DeCIOPS through both simulation and experiments in both
CW and pulsed light source conditions. This new image
modality can be adapted to any existing imaging systems using
beam scanning, such as confocal microscope and two-photon
microscope, or wide-field cameras with an added scanning sys-
tem, and will benefit broad applications requiring high-speed
imaging.

APPENDIX A: EXPERIMENTAL SETUP OF
DECIOPS

1. Optical Setup
The optical setup of DeCIOPS illustrated in Fig. 5 scans an
n × n pattern on the object and is suitable for low-repeti-
tion-rate pulsed light illumination settings. For CW light or
high-repetition-rate pulsed light illumination, an n × 1 pattern
is scanned. When this pattern sweeps n columns, the informa-
tion of n × n pixels can be integrated into a single measurement.
To generate the n × 1 pattern, we set the column to be identical
in the n × n pattern and add a 4f system composed of cylin-
drical lenses after the objective lens. The n × n pattern is then
shrunk in one dimension by a factor of n into the n × 1 pattern
(Fig. 11). The parameters of the lenses used in the setup are
listed in Table 3.

2. Pattern Generation
The pattern is generated from a DMD illuminated by a parallel
beam. In our experiment, the pattern has 4 × 4 pixels, each of

Table 3. Detailed Parameters of the Optical Components Used in the Imaging System

Element Manufacturer Part Number Note

Focusing lens Thorlabs A397TM-A Aspherical lens, focal length 11 mm
Pinhole Thorlabs P30D 30 μm pinhole
Collimating lens Thorlabs AC254-100-AB-ML Achromatic lens, focal length 100 mm (for pattern scanning)

Thorlabs ACL5040-A Aspherical lens, focal length 40 mm (for point scanning)
Tube lens Thorlabs SM2V10 Focal length 200 mm
Objective lens Olympus RMS4X 4× objective lens
Cylindrical lens Thorlabs LJ1014L1-A Focal length 25.4 mm

Thorlabs LJ1227L2-A Focal length 6.35 mm
Lenses 1 and 2 OptoSigma SLB-60-250 P Focal length 250 mm
Relay lens set [56] (one set listed
here; two sets arranged
symmetrically are required in
setup)

Thorlabs LC1582-A Focal length −75 mm
Thorlabs LC1582-A Focal length −75 mm
Thorlabs LE1076-A Meniscus lens, focal length 100 mm
Thorlabs LA1399-A Focal length 175 mm
Thorlabs LA1050-A Focal length 100 mm
Thorlabs LA1727-A Focal length 750 mm

Collection lens Thorlabs AC508-075-A-ML Achromatic lens, focal length 75 mm
Galvanometer scanner Cambridge Technology 6215HM40B
Resonant scanner Cambridge Technology CRS 8 kHz Resonant frequency 8 kHz
DMD Texas Instruments DLP7000

Fig. 11. Experimental setup of DeCIOPS that generates an n × 1
size pattern and scans it across the sample. The setup is similar to that
generating the n × n size pattern shown in Fig. 5, but with a 4f system
composed of cylindrical lenses added after the objective lens to shrink
the original n × n size pattern in one dimension by a factor of n into the
n × 1 size. The red dashed line (plane 1 and object plane) indicates the
conjugate plane of the gray-scale pattern mask.
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which has a gray-scale throughput/intensity ranging from 0 to
1. As each DMDmirror pixel only provides a binary (on or off )
light throughput, we group 32 × 32 DMD mirror pixels as one
super-pixel, so a gray-scale light throughput becomes feasible
within one super-pixel. Each super-pixel thus provides 1025
states in the range from 0 to 1. The multistate light throughput
is achieved by randomly selecting parts of the mirrors to be on,
the number of which is the product of the desired light
throughput and total number of mirror pixels (1024).

In the case of 4 × 1 pattern scanning, another 4f system
composed of cylindrical lenses is added after the objective lens
(Fig. 11). Such a system shrinks the 4 × 4 pattern in one di-
mension by a factor of four.

To obtain the high-resolution ground truth image, we
reconfigure the imaging system for point scanning. We replace

the collimating lens between the pinhole and the DMD to the
one with shorter focal length and set the displayed pattern on
the DMD to be uniform. This reduces the beam size on the
image plane, and the pattern effectively turns into a spot
matching the size of a single super-pixel of the 4 × 4 pattern.
This ensures the same overall energy collected by the photo-
detector and thus a similar SNR per measurement as in
DeCIOPS.

3. Characterization of the Pattern
As the optical mode from the diode laser was not symmetric, we
implemented a spatial filter using a pinhole after the diode laser
output. Nevertheless, non-uniform intensity of the light illumi-
nated on the DMD still appeared. Furthermore, the laser in-
terference could corrupt the pattern. We, thus, fine-tuned the

Fig. 12. (a) Measured patterns on the sample (super-pixels) match well with the designed patterns. Each gray-scale super-pixel is generated by
32 × 32 binary pixels in the DMD. The left panel shows the cases for 4 × 4 patterns, and the right panel shows the cases for the 4 × 1 pattern. (b) A
single spot pattern is generated for conventional point-scanning imaging to obtain the high-resolution ground truth of the sample. The spot size
matches the size of a super-pixel. (c) Pixel-by-pixel comparisons between the measured patterns on the sample and the designed patterns show
excellent matchings between the two.
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DMD pixel value to calibrate the intensity of the super-pixels,
so their values were as close to the design as possible.

We used an iterative approach to calibrate the intensity of
the super-pixel. The design pattern M 0 with the gray-scale
super-pixel, which was also written as M �0� for consistency,
was first converted to a pattern W �0� on the DMD through
an operator D. D essentially converted each super-pixel in
M 0 into 32 × 32 pixels in binary values on the DMD, with
the on and off pixels randomly distributed. D−1 is the inverse
operation. We used a camera to capture the projected
pattern M �1� on the object plane. We then compared M �1�

and M 0 and updated W �0� into W �1� through the following
algorithm:

W �1� � D��M �1� −M 0� × a�M �0��, (A1)

where a is the step size to control the update rate. For the kth
iteration, we have

W �k� � D��M �k� −M 0� × a�D−1�W �k−1���: (A2)

In general, the pattern could be calibrated well with <5 iter-
ations. With this calibration, we verified that the projected pat-
tern on the sample matched the designed pattern in most of the
cases (Fig. 12). In the special case of the 4 × 1 random pattern,
we took an alternative approach. We randomly generated the
pattern and measured it at the object plane. We then used this
pattern as the “design” to train the decoder for object
reconstruction.

4. Pixel Resolution and Field of View
The size of an individual DMD mirror is 13.6 μm ×13.6 μm,
and thus the size of a super-pixel is �32 × 13.6� × �32×
13.6� � 435.2 μm × 435.2 μm. The imaging system has a

magnification of 4.44, resulting in a size of
�
435.2
4.44

�
×
�
435.2
4.44

�
�

97.9 μm × 97.9 μm of a super-pixel on the image plane. A full
resolution object with 256 × 256 pixels (∼24.5 mm×
24.5 mm), requires a scanning range of �2.8° ×�2.8° in
the scanner set. We measured the illumination pattern on the
object plane across different scanning angles (Fig. 13). The ex-
cellent field uniformity ensures the quality of DeCIOPS.

5. Data Acquisition
Data acquisition is performed using a high-speed data acquis-
ition card vDAQ and ScanImage software (Vidrio
Technologies). As the illumination pattern continuously scans
across each row, the data acquisition card samples the data from
the photodetector at a rate higher than the single-pixel rate. The
data acquired within the duration of a single pixel is then auto-
matically averaged/integrated and saved as a single-pixel value.
Compared with the full resolution single-point-scanning con-
dition (256 × 256 pixels), we reduce the single-pixel rate and
the number of scanning lines by 75% in DeCIOPS (CW light

setting), reaching an undersampling rate of 6.25% (64 × 64
pixels of measurement).

To mimic the low-repetition-rate pulsed light source con-
dition, we sample the object with a high resolution at
2048 × 2048 pixels (corresponding to a high single-pixel rate)
and then downsample the acquired image digitally into 64 × 64
pixels by dropping all of the other pixels. Here, each pixel has a
small average/integration duration and could thus be consid-
ered as being acquired by a single light pulse.

6. Estimation of Signal-to-Noise Ratio
To calculate the SNR of the image in the experiment, we ac-
quire the same image 20 times. For each pixel, we calculate the
signal μ and the noise σ as the mean and the standard deviation
across 20 measurements, respectively. The SNR for the pixel is
then estimated as μ∕σ. The SNR of the entire image is taken as
the average of the SNR of all pixels.

APPENDIX B: COMPARISON BETWEEN
ISTA-NET, U-NET, AND DCSRN

We compare the performance of ISTA-Net, U-Net, and
DCSRN in object reconstruction. In the auto-encoder frame-
work, the decoder implemented by ISTA-Net is replaced by
U-Net or DCSRN. U-Net is widely used in image
reconstruction and segmentation. It first condenses the size
of the input images to extract its context and feature and then
grows them in an expanding path to perform local
reconstruction [30]. DCSRN, derived from densely connected
convolutional networks [33], has a faster training speed and
accurate reconstruction results and is commonly used in appli-
cations such as 2D or 3D biomedical super-resolution imaging.
In addition to ISTA-Net, U-Net, and DCSRN, we used B-
spline interpolation [28] to reconstruct the object under-
sampled through a simple dropout as a baseline. All of the sim-
ulation was completed on GPU RTX1080Ti 11 GB with 200
epochs and a batch size of five. In each decoder except for the
B-spline, we learned an optimized illumination pattern.We used
the validation data set to evaluate the PSNR and pixel resolution
of the reconstructed objects. U-Net, DCSRN, and ISTA-Net all
outperform B-spline interpolation. While U-Net and DCSRN
do not show a significant difference in performance, ISTA-
Net outperforms both U-Net and DCSRN with a ∼1.85 dB
increase in PSNR and 6.55% improvement in resolution at
an undersampling rate of 6.25% (Fig. 14). The simulation re-
sults demonstrated a clear advantage of ISTA-Net, which is a CS
inspired neural network, in DeCIOPS.

APPENDIX C: DECIOPS USING PASSIVE LIGHT
ILLUMINATION

To implement DeCIOPS in a passive light illumination setting
(i.e., structured detection), which is commonly used in photog-
raphy, a scanner can be added to the passive wide-field imaging
system to scan the entire image originally projected to the cam-
era. By inserting a fixed mask with an appropriate aperture at
the plane where the image is scanned, a single-pixel detector
can measure the subsampled convolution between the mask
and the original image (Fig. 15). The object can then be

Fig. 13. Measured patterns at the image plane stay consistent across
different scanning angles.
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reconstructed using the same algorithms in DeCIOPS for the
active light illumination cases.
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